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I. INTRODUCTION

Uncertainty is a primary challenge that robots must handle
to be competent in many complex, human-centered domains.
Imagine a robot that can help an elderly person search for a
missing pair of glasses at home. The robot must decide what
to do under uncertainty about (1) where the pair of glasses is;
(2) what it is observing currently; (3) what observations it will
receive after performing an action. Arguably, such uncertainty
is constantly present, due to limited knowledge about the envi-
ronment, noisy on-board sensors, and the unstructured nature
of the human world. Consequently, considering uncertainty,
namely, partial observability (1), and perceptual uncertainty
(2, 3), is of central importance for robot acting in the human
world, and it is crucial to my research.

At the same time, humans can provide, conveniently through
natural language, a powerful source of knowledge and feed-
back to the robot (e.g., “I remember seeing my glasses last time
in front of the TV.”). However, natural language is inherently
subjective and ambiguous. Furthermore, to make the most of
the human’s presence, the robot should ideally be able to
continuously and naturally interact with humans using natural
language to better accomplish given tasks, a demanding yet
necessary capability towards future collaborative robots.

To address these challenges, my research aims to enable
robots acting in human environments and interacting with
humans in a principled manner. The current methodology I
have taken is based on Partially Observable Markov Decision
Processes (POMDPs), which principally model both partial
observability and perceptual uncertainty. I view natural lan-
guage as an additional modality of stochastic perception as
well as a type of action the robot can perform, which reduces
the barrior of interfacing with humans.

Solving POMDPs for real world problems is computation-
ally prohibitive. The key idea behind our work is in exploiting
structures in the human world (e.g., octrees, correlations) and
human-robot interaction (e.g., spatial language), which signif-
icantly eliminates unrealistic compromises that previous work
make (such as constraining to 2D and object independence).

In support of this approach, I present my work that progress
from "act" to "interact," (Fig. 1) using the POMDP framework.
My study has focused on object search, a practically valuable
yet generally complex problem that contains the key elements
of uncertainty a robot faces. This statement discusses my
research arranged into two parts:

• On the end of “act,” I propose scalable planning al-
gorithms for large POMDPs. This includes a multi-
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Fig. 1: My long-term research goal is to enable robots to act in
the human world and interact with humans. My current research has
focused on handling uncertainty, particularly partial observability and
perceptual uncertainty, towards this goal ([25, 26, 24, 11]).

resolution POMDP planning algorithm for object search
in 3D [25] and a hierarchical planning algorithm for
POMDPs that model correlational object search [26].

• Progressing towards “interact,” I extended Object-
Oriented POMDP [16] with a spatial language obser-
vation model that let robots understand spatial language
with potentially ambiguous spatial prepositions [24]. Last
but not least, I discuss ongoing work on the end of
“interact,” where a robot engages in spoken dialogue with
a human while searching for objects [11].

Prior to the above line of work, I dealt with uncertainty in robot
perception through working on learning semantic maps [23,
21] and mobile robot navigation [20]. I have also developed a
general-purpose POMDP library called pomdp_py [22].

II. ACT: SCALABLE PLANNING FOR LARGE POMDPS

A. Multi-Resolution POMDP Planning in 3D

Robots deployed in households must find objects on shelves,
under tables and in cupboards, naturally a 3D environment.
Although past experience or semantic knowledge helps hy-
pothesizing likely search regions [7, 3], object search ul-
timately depends on the ability to search carefully under
limited field of view (FOV) within each region. Due to its
computational complexity, previous works have constrained
POMDP for object search in 2D regions [2, 5, 17]. The key
challenges lie in the intractability of maintaining exact belief
due to large state space [13], and the high branching factor
for planning due to large observation space. In Zheng et al.
[25], we propose a general POMDP formulation for the multi-
object search task with 3D state and action spaces, and a
realistic observation space in the form of labeled voxels within
the viewing frustum from a mounted camera. To address



challenges of computational complexity, we propose a multi-
resolution planning algorithm that centers on a novel octree-
based belief representation, which captures beliefs at different
resolutions simultaneously and allows efficient and exact belief
updates. Our simulation results show that, as the problem
scales, our approach outperforms exhaustive search as well as
POMDP baselines without resolution hierarchy under the same
computational requirement. We also show that our method
is more robust to sensor uncertainty against the POMDP
baselines. Finally, we demonstrate our approach on a torso-
actuated mobile robot in a lab environment. The robot finds 3
out of 6 objects placed at different heights in two 10m2×2m
regions in around 15 minutes. Our work demonstrates that
such challenging POMDPs can be solved online efficiently and
scalably with practicality for a real robot by extending existing
general POMDP solvers with domain-specific structure and
belief representation.

B. Hierarchical Planning for Correlational Object Search
In realistic applications of object search is that robots will

need to locate target objects in complex environments while
coping with unreliable sensors, especially for small or hard-
to-detect objects. In Zheng et al. [26], we introduce COS-
POMDP (Correlational Object Search POMDP), a general
planning framework for optimal object search leveraging given
correlational information. This overcomes a limitation of the
above work [25] where objects in the environment are assumed
to be independent (for computational reasons). We address
scalability by proposing a hierarchical planning algorithm,
where a high-level COS-POMDP plans subgoals, each fulfilled
by a low-level planner that plans with low-level actions (for ex-
ample, using the local 3D object search algorithm in the above
work [25]); both levels plan online based on a shared and
updated COS-POMDP belief state, enabling efficient closed-
loop planning. We evaluate the proposed approach in AI2-
THOR [8], a realistic simulator of household environments,
and we use YOLOv5 [10, 6] as the object detector. Our results
show that, when the given correlational information is accu-
rate, COS-POMDP leads to more robust search perfomance for
target objects that are hard-to-detect. In particular, for target
objects with a true positive detection rate below 40%, COS-
POMDP significantly outperforms the POMDP baseline not
using correlational information by 42.1% and a greedy, next-
best view baseline [19] by 210% in terms of SPL (success
weighted by inverse path length) [1], a recently developed
metric that reflects both search success and efficiency.

III. INTERACT: LANGUAGE AS AN INTERFACE

A. Spatial Language Object-Oriented POMDP
Humans use spatial language to naturally describe object

locations and their relations (e.g.. “The red car is in front
of Chase Bank”). However, spatial language is inherently
subjective and potentially ambiguous or misleading. In Zheng
et al. [24], we consider spatial language as a form of stochastic
observation. We propose SLOOP (Spatial Language Object-
Oriented POMDP [16]), a new framework for partially observ-
able decision making with a probabilistic observation model

for spatial language. We apply SLOOP to object search in
city-scale environments given a spatial language description of
target locations. We collected a dataset of five city maps from
OpenStreetMap [9] as well as spatial language descriptions
through Amazon Mechanical Turk (AMT). To understand am-
biguous, context-dependent prepositions (e.g. behind), we train
a model that infers the latent frame of reference (FoR) given
an egocentric synthetic image of the referenced landmark
and surrounding context. Results show that our method finds
objects faster with higher success rate by understanding spatial
language compared to a keyword-based baseline used in prior
work [16]. We deploy SLOOP for object search in AirSim
[12], a realistic drone simulator, where the drone is tasked to
find cars in a neighborhood environment.

B. Dialogue Object Search

We envision robots that can collaborate and communicate
seamlessly with humans. It is necessary for such robots to
decide both what to say and how to act, while interacting with
humans. In this ongoing work [11], we introduce a new task,
dialogue object search: A robot is tasked to search for a target
object (e.g., fork) in a human environment (e.g., kitchen),
while engaging in a “video call” with a remote human assistant
who has additional but inexact knowledge about the target’s
location. We conducted a pilot study where we experimented
with both speech-based dialogue and text-based dialogue in
a home simulation environment based on AI2-THOR [8] and
found that participants typically engage in frequent back-and-
forth when using speech. We also observed several common
behaviors by participants such as describing their observations,
beliefs, or movement recommendations.

Our focus on decision-making systems for full interactions
under a principled framework differs from recent work in
visual-dialogue navigation that predict the next action given
dialogue history [14] and assume language input from an
oracle during training [27]. There are fundamental challenges
related to language grounding and dialogue systems (e.g.data
collection, evaluation). Our current step is to develop a method
that allows a robot to generate sequential intents together with
planning physical actions for the search.

IV. FUTURE WORK

For the near future, I plan to invest time mainly in [11]
as I see the importance to develop a practical robot system
capable of deciding what to say and how to act simultaneously,
while combatting fundamental challenges in dialogue. I hope
to learn from the success of recent large language models
[15, 4]. My goal is to conduct a user study with an effective
dialogue object search system in the real world. This could
be indicative for my research towards future robots in human
environments. In the long run, my research goal is to develop a
general framework that unifies decision-making for dialogue
and physical action that can be deployed in real-time on a
robot for various tasks. Finally, I hope to expand my research
to domains where a robot interacts with objects under partial
observability, a topic I recently started to work on [18].
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