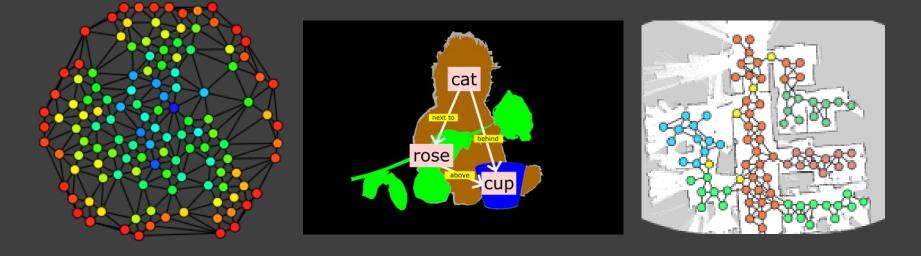
Probabilistic Semantic Mapping Using Graph-Structured Sum-Product Networks

Kaiyu Zheng, Andrzej Pronobis, Rajesh P. N. Rao University of Washington

To be presented at **AAAI'18**

Motivation Graph-Structured Data



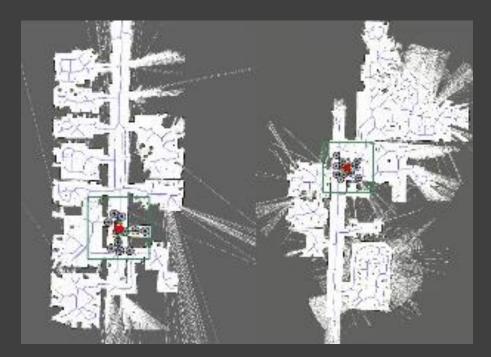
Social Network Analysis

Computer Vision (Semantic Segmentation)

Robotics (Semantic Maps)

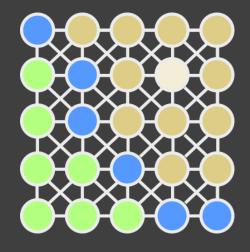
Motivation Graph-Structured Data

- **Real-world** graph-structured data:
 - Complex
 - Noisy
 - Dynamic (with varying size)



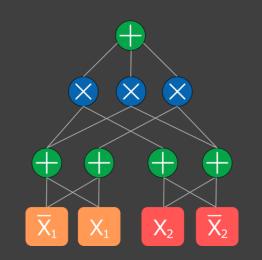
Motivation Traditional Structured-Prediction

- Inference about graph-structured data
 - Structured Prediction
- Traditional structured prediction approaches:
 - Require **fixed** number of variables
 - Require **static** global structure
 - Place strict constraints on variable interactions



Graph-Structured Sum-Product Networks (GraphSPNs)

Leverages Sum-Product Networks

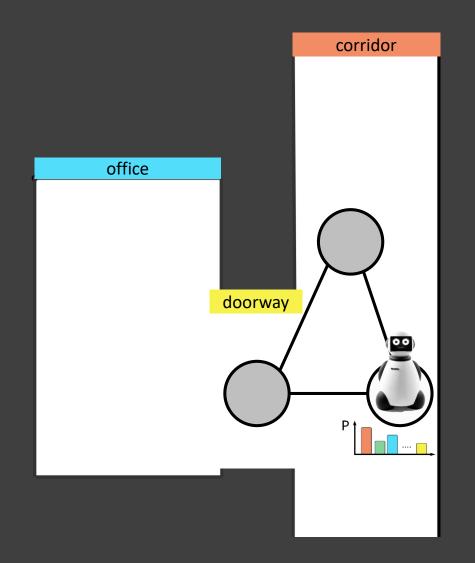


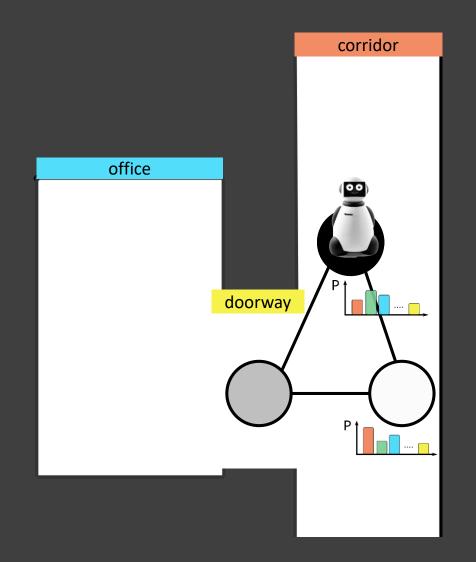
- Guarantee tractable probabilistic inference
- Incorporate probabilistic semantics in structure
 - Hierarchical mixture of parts

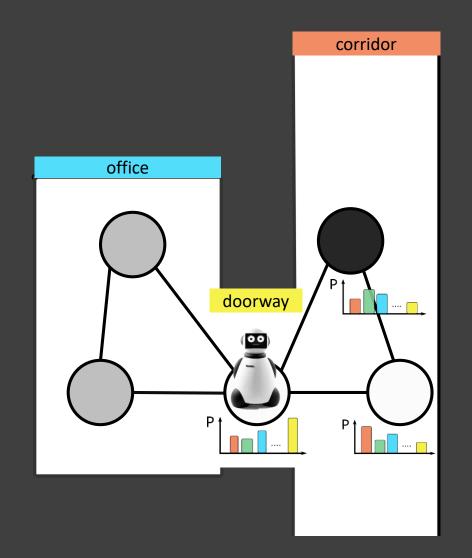
Graph-Structured **S**um-**P**roduct **N**etworks (GraphSPNs)

Deep probabilistic model for SP Complex, noisy variable dependencies Template models dynamic graphs of varying size

Semantic Mapping Using GraphSPNs



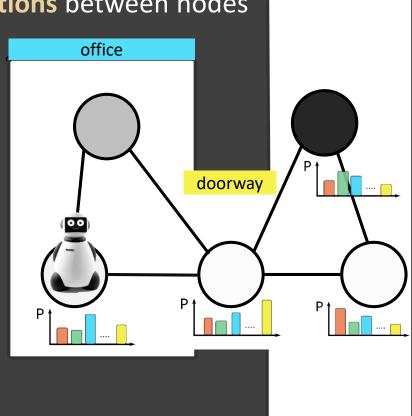




Problem:

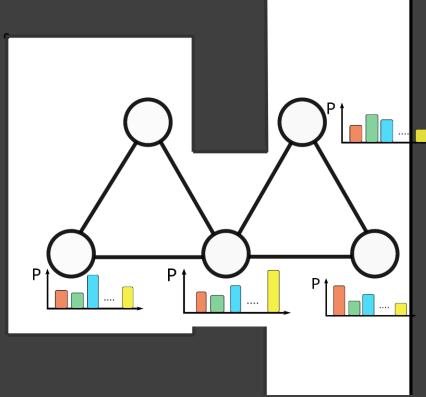
Semantic Mapping:

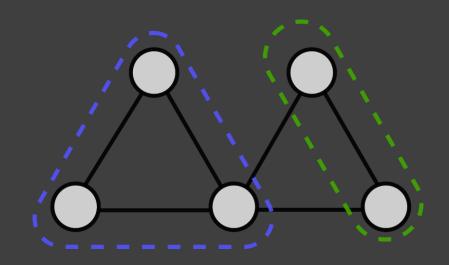
- Assign correct labels to latent semantic variables
- Leverage **relations** between nodes

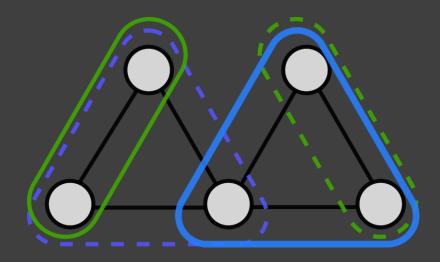


corridor

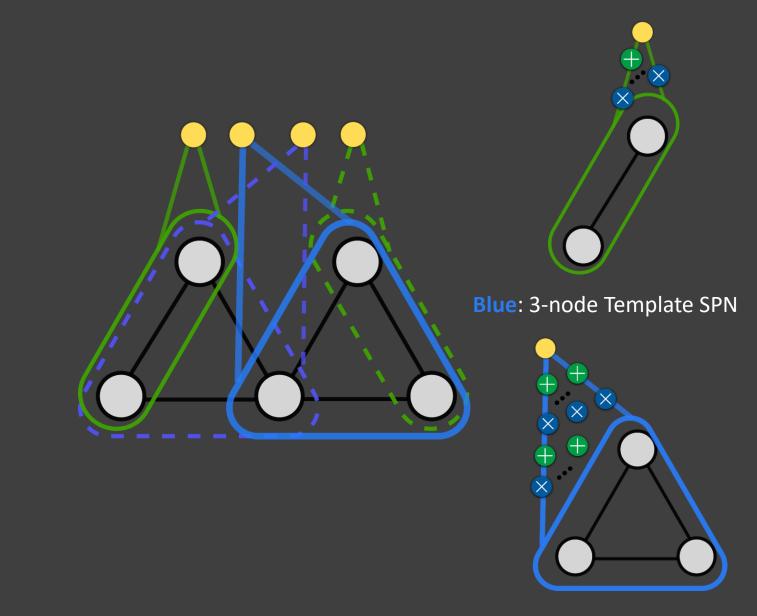
In this example, each node has **one latent variable** for semantic class, Corresponding to A **distribution** of local evidence

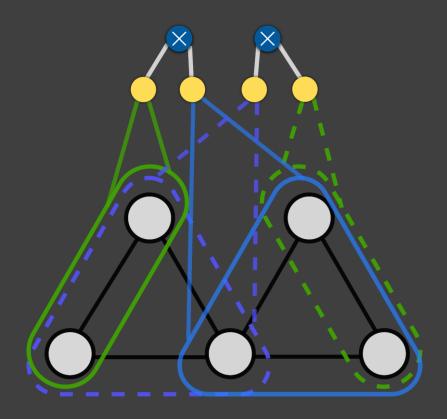


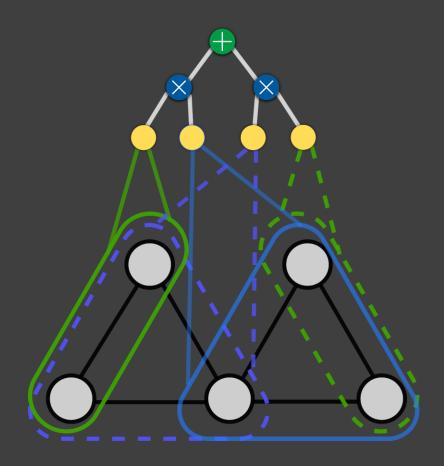


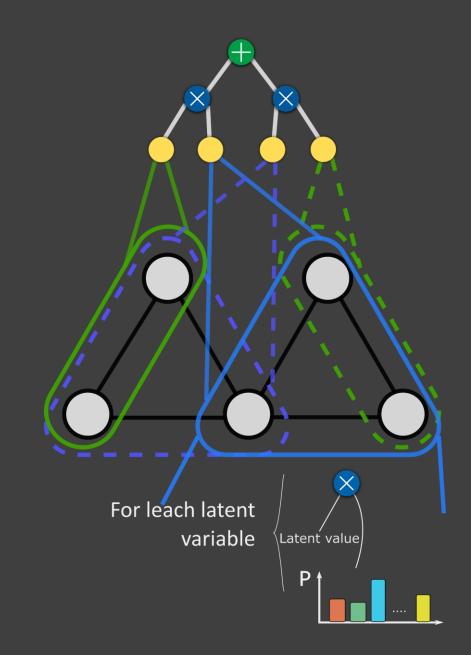


Green: 2-node Template SPN





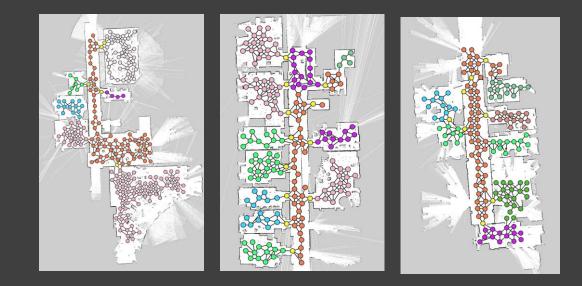




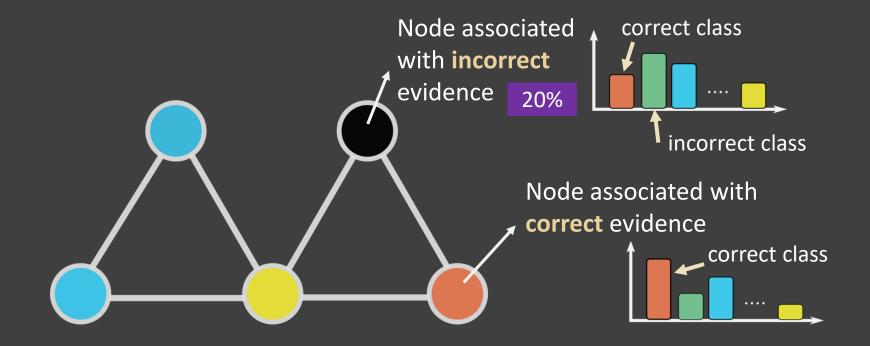
Experiments

Dataset

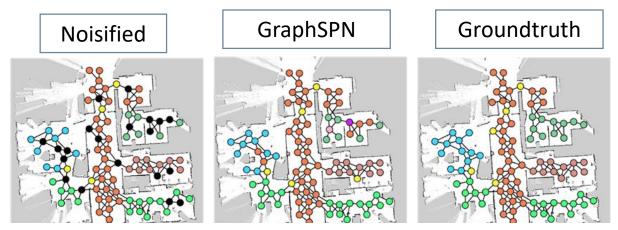
- **99** topological graphs on 11 floors of 3 buildings in different cities.
 - Trained template SPNs on graphs from 2 buildings
 - Tested inference over full graphs on the other building



Experiment 1 Disambiguate Noisy Semantic Info



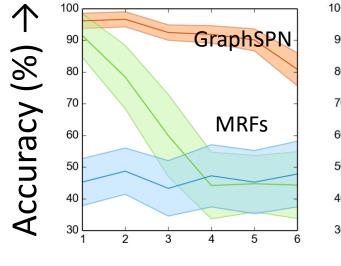
Results

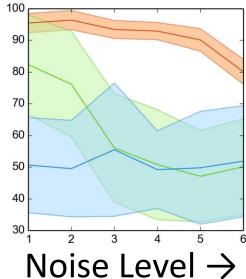


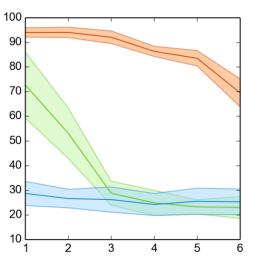
Freiburg

Saarbrücken

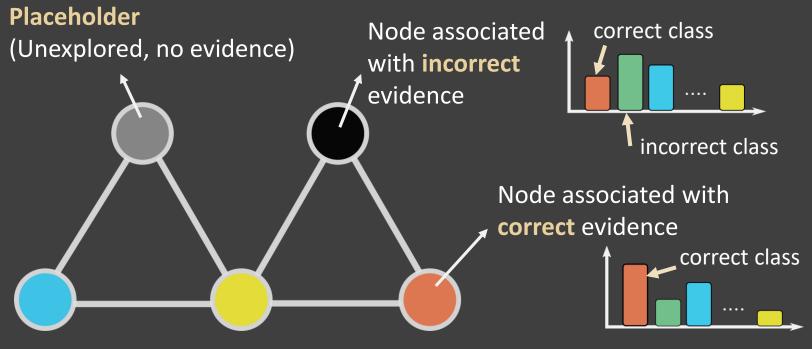
Stockholm





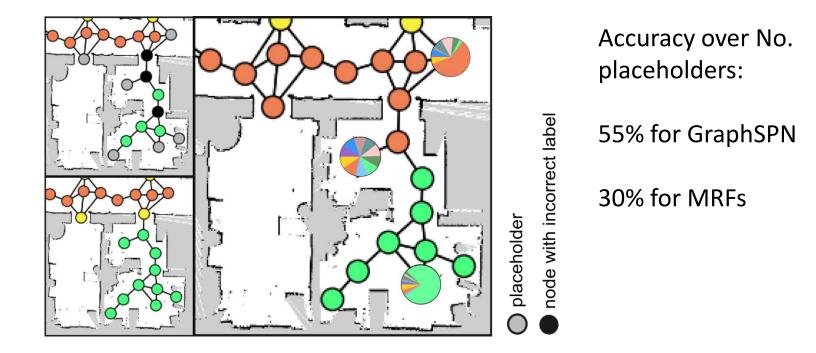


Experiment 2 Infer Placeholder Semantics



local evidence distribution D(X)

Results: Marginal Inference over Placeholders



Experiment 3 Detect Novel Structure

- Investigate quality of likelihood produced by GraphSPNs
- Create **graphs** unseen during training by swapping categories (e.g. corridor with doorway):

 GraphSPNs were successful in this task, able to identify 90% novel structures, while having 10% false positive rate.

Conclusion & Future Work

- Introduced GraphSPNs
- Applied GraphSPNs to model semantic maps
- In the *future*, we look to:
 - Build a **unified SPN model** for hierarchical spatial knowledge representation.
 - Extend the use of GraphSPNs on other problems, such as semantic segmentation.