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. Overview

Motivation
* Real-world graph-structured data:
* Complex, noisy, and dynamic
(of varying size)
 Example: topological graphs
built from robot sensory data
* Yet, traditional structured-prediction:
* Places strict constraints on
variable interactions
* Requires fixed number of variables
* Requires static global structure

Contributions
* Graph-Structured Sum-Product Networks
(GraphSPNs):
 Learn deep probabilistic models of
graph-structured data
 Capture complex, noisy
variable dependencies
 Handle dynamic graphs with
varying number of variables
 Leverage Sum-Product Networks (SPNs)
 Learned models of global semantic maps
with topological spatial relations
* Disambiguate uncertain semantics
based on noisy spatial relations
* [Infer semantic descriptions
for unexplored places
* Detect novel environment structure

Il. Sum-Product Networks (SPNs)

Sum (Mixture Model)

Latent Variable

Weights (Priors)

Product (Compositions of Parts)

Low-level Features "

Input Variables

* New deep probabilistic architecture with
solid theoretical foundations (poongpomingos uar1)
 (Can be viewed as:
deep architecture and graphical model
 Learn conditional or joint distributions
* Tractable partition function,
exact inference
e Structure semantics:
hierarchical mixture of parts

VI. Experimental Results

Experiments

#1: Disambiguate Semantic Info

* Noisified graphs

* No placeholders

* Accuracy = percent of correctly
classified nodes in the graphs

#2: Infer Placeholder Semantics

* Noisified graphs

 With placeholders

* Accuracy = percent of correctly
classified placeholders
in the graphs

#3: Novel Structure Detection

* No noisification (X = @)

* No placeholders

* Simulating world structure
changes by swapping evidence
e DW and CR, CR and 1PO (novel)
e 1PO and 2PO (normal)

e Structure is novel if:

P(Y = y) < threshold

* Novelty detection by thresholding

likelihood normalized by graph size
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lll. Semantic Maps

Topological graphs anchoring local
semantic information

Dynamic: expands during world exploration

Nodes represent places

Edges indicate navigability & spatial relations

— with local semantic evidence
Placeholders are unexplored places

— with no evidence

Example for a doorway connecting 2 rooms

pametis = = = = = = =

O corridor O doorway O 1PO O placeholder
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Y : latent var
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IV. GraphSPNs

decompositions
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Green: template SPN 1

v  Blue: template SPN 2

Introducing noise:
20% of nodes associated with
incorrect evidence

Varying levels of uncertainty
about semantic information
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two buildings

* Testing: graphs from
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 Marginal inference:
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Decomposition #1
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#1 Disambiguating Semantic Info

Noisified graph
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Decomposition #3
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Decomposition #4

© 2-node template

Accuracy for Increasing Level of Noise

100

80

Accuracy (%)

5 § 40 |
Freiburg
1 2 3 4 ) 6 30

Noisification Level

90

70}

60 -

Response of MRF-2

Decom

O 1-node template

#2 Infer placeholder semantics
Marginal Inference Over Placeholder Class

©
o
©
—
O
(b}
=
O
&
q).—
S g
o.—
c =
L o
T 3
aQ c

Accuracy for Different Levels of Noise

GraphSPN
Saarbriicken
78.15%(+/-9.95)
55.18%(+/-19.67)

MRF-2
Saarbriicken
39.85%(+/-19.42)
30.58%(+/-5.57)

MREF-3
Saarbriicken
31.94%(+/-5.26)
28.86%(+/-6.16)

Stockholm
67.57%(+/-11.11)
37.56%(+/-10.44)

Freiburg
2 67.58%(+/-10.42)
5  40.59%(+/-12.22)

position #5 Stockholm
12.44%(+/-3.46)

10.04%(+/-2.59)

NL Freiburg
2 28.32%(+/-7.53)
5  24.23%(+/-11.40)
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2 28.71%(+/-5.43)
5 18.02%(+/-7.49)
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10.11%(+/-0.51)
8.96%(+/-1.19)
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