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Abstract

Solar irradiance forecast is the pivotal factor for power generation scheduling at
photovoltaic (PV) power plants. To this end, we propose a framework to model solar
irradiance that leverages both short-term dependency (several days) and dependency
on time in the annual cycle. We focus on two classes of methods, autoregressive
(AR), and autoregressive with exogenous variables (ARX), and investigate LASSO
regression, and non-linear methods, including support vector regression (SVR) and
long short-term memory (LSTM) as the underlying mechanism. Our experiments
on data collected at a PV power plant for over five years show that considering
external information such as weather on top of the historical solar irradiance data
for longer period of time lowers the error of solar irradiance forecast.

1 Introduction

Photovoltaic (PV) power plants are energy farms that enable large-scale generation of solar power.
Because power generation from solar panels is directly proportional to solar irradiance [10], it is
crucial for a PV power plant to forecast the level of solar irradiance a certain time period in advance, in
order to optimize the operating cost through generation scheduling [6]. Using complex physics-based
models is generally considered expensive due to high computational costs [9]. Hence, in this project,
we aim to use cost-effective machine learning techniques to learn models that consider weather
information and are capable of forecasting solar irradiance reliably.

Solar irradiance can be naturally represented by a time series. Among the numerous methods in
analyzing time series data, autoregressive (AR) models attempt to predict future values of the time
series variable by only considering past observations of the variable, whereas autoregressive models
with exogenous variables (ARX) is a class of methods that consider external information.

We are provided with daily solar irradiance time series data by Shizen Energy Inc., and we gathered
hourly weather data near the plant location by scraping from Japan Meteorological Agency. We
conducted statistical analysis of stationarity, seasonality, and trend of the solar irradiance time series.
We found that the solar irradiance data exhibits seasonality for a cycle of one year. This suggests the
solar irradiance on a certain day in a year is influenced by where the day lies with respect to the year.
In addition, solar irradiance also depends on weather conditions that may change within a few days.

Therefore, we propose a framework for learning models to forecast solar irradiance, where both
short-term dependencies and dependency on time in the annual cycle can be learned (Section 4).
We experimented with linear and non-linear models for AR and ARX. For linear, we used LASSO
regression. For non-linear, we used support vector regression (SVR), and long short-term memory
(LSTM). We found that SVR and LSTM outperform LASSO regression with a slight gain.

Notation We use Y to denote solar irradiance variable,X to denote a set of exogenous variables.
We use yt to denote observation of solar irradiance at time t, and xt to denote observations of



exogenous variables. For two time points t1 and t2 where t2 > t1, yt1:t2 = [yt1 yt1+1 · · · yt2 ]
T ,

and similar goes for xt1:t2 . Other notations are defined in the context.

2 Related Work

Several studies have been conducted on the problem of using machine learning methods to predict
solar irradiance. Prema and Rao [9] used traditional autoregressive methods such as moving average
and triple exponential smoothing and were able to achieve a low error rate of 9.28% in prediction. In
this work, however, such traditional statistical models perform poorly and are not recommended for
use. One possible explanation is that [9] used hourly solar irradiance data, which exhibit much less
variance than daily solar irradiance data used in our case.

Similar to this work, Sherma et. al. [11] proposed to learn site-specific prediction models for different
power plants. Their models are based on linear least squares and support vector machine (SVM); they
learn a function yt = f(xt) that maps, for a certain time t (day), the weather information and day in
year (together as xt) to solar irradiance yt. Different from their approach, we use ARX models that
take into account values of solar irradiance and weather in the past.

Exogenous variables have been considered in predicting time series in different domains. Damon and
Guillas [3] used wind speed and temperature for predicting ozone concentration, and e Silva et. al. [4]
used season of year for predicting energy prices. For solar irradiance prediction, similar to this work,
Alzanhrani et. al. [1] also used several weather attributes as well as day of the year as exogenous
information to train a neural network; however, they only tested their model to predict solar irradiance
generated from a physical model, which is far too regular compared to real observations.

3 Dataset

Our data came from two sources: solar irradiance data provided by Shizen Energy Inc. and weather
data scraped from Japan Meteorological Agency. Specifically, we obtained daily observational solar
irradiance data for almost 5 years starting January 2013 and collected hourly observational weather
data for the corresponeding duration from http://www.jma.go.jp. The raw format of solar irradiance
and weather data as well as our preprocessing methods are presented below.

time stamp solar irradiance
(daily) (kWh/m2)

Table 1: Solar Irradiance Dataset

station sea-level dewpoint vapor wind
time stamp pressure pressure rain fall temp. temp. pressure humidity speed

(hourly) (hPa) (hPa) (mm) (C) (C) (hPa) (%) (m/s)

wind sun station snow snow cloud
direction duration solar irr fall accum. weather amount visibility

(categorical) (h) (MJ/m2) (cm) (cm) (categorical) (%) (km)

Table 2: Weather Dataset

Note that the weather data includes missing values, some of the features are numerical and others are
categorical, and the scale of the features varies. To facilitate efficient leanring by machine learing
algorithms, we preprocessed in the following ways.

1. Interpolate missing values linearly in both direction in terms of time.
2. Replace categorical variables by dummy variables.
3. Normalize all the features except the dummy variables introduced in Table 2.

Moreover, weather data is originally hourly data whereas solar irradiance is daily data. LSTM
described in Section 4.1.3 requires dataset to be in the same time unit, therefore, we further processed
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the weather data by taking the mean over 24 hours for numerical variables and by normalizing the
total counts for dummy variables.

3.1 Statistical analysis

We analyzed the stationarity, seasonality, and trend of the solar irradiance time series data. First,
to study the stationarity, we employed the Variogram [8] which computes Gk = Var(yt+k −
yt)/Var(yt+1 − yt), for k ∈ {1, 2, · · · , }. We observe from Figure 1 (top) that the value of Gk is
upper bounded with regular cycles, which suggests stationarity. The stationarity property can also
be seen from Figure 1 (bottom), where the annual mean is almost constant, and the daily values
vary within a bounded range. Also, from the same figure, we can see that the raw solar irradiance
data exhibits seasonality for a cycle of around one year. Its value reaches maximum in the summer,
minimum in the winter. However, solar irradiance has high fluctuations for a short period of time (i.e.
several days). This suggests, as in [9][10], that solar irradiance is correlated with weather attributes;
weather changes with regularity seasonally, but may change drastically within a shorter time frame.
To investigate the correlation between solar irradiance and weather attributes, for each time step, we
plotted the (averaged) weather data and the corresponding solar irradiance, shown in Figure 2. We
observe that humidity and sunlight duration have strong correlation with solar irradiance. In addition,
we notice that in the location chosen for the power plant, it seldomly rains, and that solar irradiance
is low as the amount of rain increases.

Figure 1: Plots of variogram (top), daily observations, weekly average, and yearly average (middle).

Figure 2: Correlations between solar irradiance and several weather metrics.

3.2 Smoothing models

As an extention of the statistical analysis of the dataset, we investigated several basic autoregressive
time series models. These models attempt to arrive at a prediction through simply smoothing N
most recent observations. Our goal is to obtain baseline results for comparison with more complex
regression models. To this end, we used the simple moving average model and the n th order
exponential smoothing model. Simple moving average computes a smoothed value at time T by
taking the average of N most recent observations before T . The nth order exponential smoothing
works by recursively applying decreasing weights to observations that are less recent, using a provided
discount factor λ:

ŷ
(n)
t = λŷ

(n−1)
t + (1− λ)ŷ(1)t−1 (1)
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where ŷ(0)t = yt, and y0 could be specified by the user (e.g. simply 0). Figure 3 illustrates the extent
that these simple models can fit to the data.

Figure 3: Solar irradiance forecasts by smoothing models.

4 Methodology

4.1 Framework for Learning Solar Irradiance Models

The modeling of solar irradiance should consider short-term dependency due to the correlation with
weather attributes, as well as dependency on time in the annual cycle due to seasonality. To this end,
we propose a framework for learning such models. In this framework, short-term dependency is
built-in to the AR and ARX model, defined as follows.

AR: yt+h = f(yt−u:t) (2)
ARX: yt+h = f(yt−u:t,xt−u:t) (3)

where u defines the size of the window which contains recent observations, assumed to affect yt+h,
the forcast after temporal horizon h. The above fomulation implies the assumption that the solar
irradiance yt+h is only determined by past observations within a window of the target variable yt−u:t

(as well as that of the exogenous variables xt−u:t if the model is ARX). Dependency on time in the
cycle is incorporated into the training data for ARX models as day in the year.

Training samples are of the form (zt−u:t, yt+h), where

zt−u:t =

z
T
t−u
...
zTt

 =



yt−u

...
yt

 For AR models

x
T
t−u yt−u

...
...

xT
t yt

 =

w
T
t−u dt−u yt−u

...
...

...
wT

t dt yt

 For ARX models

(4)

Here, for i ∈ {t− u, · · · , t}, the exogenous variables xi are specified as xi =
[
wT

i di
]
, where wi

is the weather data in the window, and di ∈ {1, · · · , 365} are days in the year for the time point i.
The information of day in the year enables the model to learn dependency between the solar irradiance
observation and its time point relative to the annual cycle, which is then reflected by dt−u:t. During
training, we can flatten zt−u:t such that it becomes a feature vector of u dimensions for AR models,
and (2 + |wi|)u dimensions for ARX models. Denote the flattened zt−u:t as zFt−u:t.
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4.1.1 LASSO Regression

The first ARX model we consider is LASSO regression, that is, linear regression with LASSO
regularization. Weights β are learned from optimizing `(β) as follows:

`(β) =
1

2(T − h)

T−h∑
t=1

(yt+h − βTzFt−u:t)
2 + λ||β||1 (5)

where T equals to the total number of time points in the solar irradiance time series.

4.1.2 Support Vector Regression

Next, we consider the SVR model. We can formulate the SVR objective for our context as follows,
as described in LibSVM [2]1:

min
α

1

2
(α−α∗)TK(α−α∗) + ε

T−h∑
t=1

(αt + α∗
t ) +

T−h∑
t=1

yt+h(αt + α∗
t )

subject to eT (α−α∗) = 0

0 ≤ αt, α
∗
t ≤ C, t = 1, · · · , T − h

(6)

where Kij = K(zFi−u:i, z
F
j−u:j) is the kernel function. We used RBF kernel in experiments.

4.1.3 Long Short-Term Memory networks

Lastly, we consider Long short-term memory networks (LSTMs)[5], which is a class of neural
network. Unlike common feedforward neural networks or convolutional neural network, LSTMs
allow information to persist inside the model by having loops in their architecture. Because of this
feature, LSTMs are capable of learning long-term dependencies and have been performing well on
timeseries forecasting problems [7] and many more interesting problems including language modeling
[12] and image captioning [13]. As other neural networks, LSTMs also have many hyperparameters
such as number of layers, number of units in a layer, dropout ratio, and so on. We show the architecture
selected by crossvalidation as described in the next section in Figure 4.

5 Experiments

In our experiments, we forecasted the solar irradiance of one day ahead (h = 1) given the solar
irradiance and weather data of previous u days (window size). We examined models that span
multiple levels of complexity, namely, LASSO regression, SVR with RBF kernel, and LSTM. The
models were trained both autoregressively and with exogenous information, and different window
sizes, u ∈ {1, 7, 30, 365}, were explored.

We used the first 70 percent of the timeseries data, which contains approxiamtely 1200 samples, as
training dataset and the rest as testing dataset. The hyperparameters were chosen through 10-fold
crossvalidation. We evaluated the models using the testing dataset by mean absolute error (MAE)
between the observational data and the forecasted value.

5.1 Results and Discussion

The forecasts by autoregressive exogenous models are correlated to the observed solar irradiance as
illustrated by Figure 5, and its fit is not shifted unlike the forecasts by the basic smoothing models
shown in Figure 3.

For window size 1 to 30, adding exogenous information consistently reduced the error as Figure 6
shows. This result is reasonable because as we presented in the Dataset section, there are significant
short-term correlation between solar irradiance and weather. Therefore, by using previous weather
data on top of the solar irradiance data itself, estimators should be able to make better forecasts.

However, the error for LASSO and SVR significantly increased with weather data when window size
was set to 365. We reasoned this is because of the lack of model complexity. Given a large number

1This objective corresponds to ε−SVR
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Figure 4: The architecture of the LSTM network. The first dimension is None because it varies
depending on the number of samples, and the output dimension is 1 because the network outputs a
scalar value prediction.

of features (365 days × 43 features ≈ 16, 000), training of the relatively simpler models converged
without learning much. This claim is supported to some extent by the fact that, a more complex
model, namely LSTM, outperformed the other models by far.

SVR performed the best for small window size like 1 to 7. One possible explanation is that LASSO,
as a linear model, lacked the representational power to learn the relationship between solar irradiance
and weather. On the other hand, LSTM, as a high dimensional non-linear model, lacked the amount
of data to fit to the underlying structure that may exist. SVR is a medium-sized non-linear model, so
it was just good in this particular case for smaller window size.

6 Conclusion

We have introduced a framework to train models for solar irradiance that consider both short-term
dependency as well as dependency on time in the annual cycle. Our experiments demonstrate that
by adding weather attributes and day in the year as exogenous information, the prediction error is
reduced. Besides, the best accuracy was obtained when longer time dependency was considered
with more complex model, namely the long short-term memory network. Indeed, even though
our proposed methods are cost-effective and can forcast the general trend of solar irradiance, the
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Figure 5: Solar irradiance forecasts by autoregressive exogenous models with the window size that
performed the best on testing dataset. The plots are for LASSO, SVR, and LSTM from the top.

(a) MAE by autoregressive models. (b) MAE by autoregressive exogenous models.

Figure 6: Comparison of autoregressive models vs. autoregressive exogenous models.

prediction error is significantly greater than physics-based methods which has an MAE of around 400
Wh/m2. Nevertheless, there is plenty of room to improve. First, the model can incorporate long-term
dependency (one year) by training on samples that contain observations on the same day in year from
all other years. Second, currently the weather data that we obtained is only an approximation of the
weather at the plant location, and we used linear interpolation to fill in missing observations. The
performance can potentially benefit if weather data is more accurate. Finally, we can consider more
exogenous information that may have higher correlation with solar irradiance, such as solar activity,
satellite images of cloud above the plant location, and so on.
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